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Abstract. A shon summary of the theoretical and experimental status of elastic tunnelling 
between n o d  metals i s  given. Methods for the determination of the electron-phonan 
interaction function, uZF(o), from the wnductance, ~ ( o ) ,  ofa  normal metal tunnel junction 
are presented and their performance is discussed. A complete list of sum rules applicable to 
the inversion pmeedures is given for the first time. Elimination of the thermal smearing of the 
conductance data with the help of the fast Fourier transform algorithm and the regularization 
method is described.~ The possibility of the existence of 'interference' between the elastic and 
inelastic pMS of the tunnelling current is discussed for wnductivity data of Pb and Sn. 

1. Introduction 

Starting from the paper of Svistunov et al [l], fresh attention has been paid to the 
problem of tunnelling between the electrodes of normal metals, as it became possible 
to derive the frequency dependence of the electron-phonon coupling function from 
tunnelling conductivity data. The dependence of the odd part of the conductivity, 
U-@) = [U(@) - u(-o)]/Z, on the real part of the phonon-induced electron self-energy, 
E(@) = &(a) +iC,(o), was postulated by Hermann and Shmid in 1968 to have the form 
121 : 

The superscripts a and b denote the two normal electrodes of a tunnel junction, aHS was 
estimated in [2] to be of order 30, JL is the chemical potential, V is the applied voltage 
(eV = o, h = 1) and uo is the tunnelling conductance in the absence of self-energy effects. 
Equation (1) has been obtained assuming a weak energy dependence of the tunnelling matrix 
element. 

The presence of the self-energy-induced structure in the tunnelling conductivity has 
been corroborated experimentally by Rowell et a1 [3] and Burrafato et al [4], and more 
recently by Svistunov et al [l] and Chemyak et al 151. The experimental value of the 
constant 0 1 ~ s  is of order unity [1,3],- much less than estimated in [Z]; but applying the 
two-band model of the banier insulator, 0 1 ~ s  is replaced by 01 << WHS [l]. Still, there arises 
a question whether an electron tunnels at its bare band-structure energy, as was assumed in 
[ Z ] ,  or the energy should be renormalized to include the many-body effects in the tunnelling 
matrix element. Appelbaum and Brinkman [6], working from the latter, have shown that no 
self-energy effects remain in the odd part of the conductivity when renormalhation takes 
place. For a simple model, Davis [7] came to the same conclusion without using the transfer 

~Hamiltonian approach. As renormalization of the electron energy seems to be necessary 
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1671, the effects observed in [l, 3-51 should be due to something other than the exponential 
part of the tunnelling matrix element. Appelbaum and Brinkmann [6] suggested that the 
structure observable in the odd part of the tunnelling conductance is caused by a weak 
momentum dependence of the self-energy or the pre-exponential factors of the tunnelling 
matrix element. Leavens 181, assuming the weak momentum dependence of the electron 
self-energy, has derived a formula very similar to (I): 

n-(ev) = -mI(va/w.)Wev) - (yb//.&(-eV) - S ~ V I .  (2) 

Here y%b is a constant of order unity, and 6 depends on the properties of both electrodes. 
The barrier-dependent parameter 01 does not appear in (2) since it has been assumed that 
01 is the same for both sides of the barrier. However, the barrier asymmetry should be 
reflected in (2) at least when the phonon spectra of the two metal electrodes show up in the 
same energy range [3]. 

One may question the role of the ‘interference’ term, which, according to [9], 
should appear in the tunnelling conductance together with the elastic and inelastic 
contributions. Belogolovski ef nl [IO, 111 explain the frequencydependent dumping of 
the odd conductance curve of an AI-Ian junction [4] by the existence of this additional 
term. The ‘interference’ contribution has the same symmehy and is of the same order as 
the elastic one, but bas opposite sign. The net effect on the odd part of the tunneIling 
conductance is that it, like the electron-phonon coupling, would be weakened at higher 
frequencies: 

a ! Z F ( W )  4 [l - ,#J(o)la2F(o). (3) 

Here, 4(0) is a smooth function, normalized to unity, that increases with frequency. One 
may interpret this effect as a partial ‘undressing’ of the tunnelling electrons from the many- 
body interactions characteristic of the bulk electrode [ 121. 

There is a set of superconducting materials expected to have a sharp structure in the 
electronic density of states near the Fermi energy. Among them are the A15 compounds and 
Chevrel phases. Such a structure should have an apparent effect on the conductance of the 
normal metal tunnelling junctions [13]. In this case the symmehy of the electron self-energy 
is deviated and the odd part of the conductance of the normal metal tunnelling junction 
additionally contains information about the electronic density of states, A(@) [13,14]. 

A serious problem in measurements of the normal metal tunnelling junction 
characteristics is thermal smearing of halfwidth 5.4kaT (kB is the Boltzmann constant), 
which, for example, completely smears the structure of the electron-phonon coupling 
function of Sn at T = 4.2 K (figure I). Leavens, motivated by work of Hertel and Orlando 
[16], has recently derived an inversion formula allowing elimination of thermal smearing 
[17]. Unfortunately, this formula is very sensitive to errors in the conductance data [17, 181. 

The problems and questions listed above will be. discussed in the subsequent sections 
of this work. 

2. Tunnelling conductivity 

In view of the previous comments, several effects should be reflected in the formula for 
the conductivity of the normal metal tunnelling junction. However, even the general shape 
of the conductivity of the planar junctions is described by the theoretical models with an 
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Figure 1. The Eliashberg fonction, &F(w). of Sn 
(after 1151) (full curve) and the illustration of thermal 
smearing of u2F(o) at T = 4.2 K Broken curve). 
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P i p  2. The electron-phonon interaction function, 
or*F(w). of Pb calculated from the data of [3] (open 
circles) and simulated for the same 'experimental' 
conditions (full c w e ) .  

accuracy of a few per cent only. This is caused by the complicated shape of the tunnel 
barrier in the real junctions. Assumption of a trapezoidal barrier gives similar results within 
different models [ZO]. Both the diffuse and sharp metal-insulator interface approximations 
lead to a conductivity that is parabolic with voltage. n e  general picture is not affected by 
inclusion of effects due to image forces (lowering of the barrier and smearing of its edges). 
An important feature is the shift of the  minimum of a(eV)  from zero voltage owing to 
barrier asymmetry. Unfortunately, the experimentally observed shifts are sometimes larger 
than predicted by the model for any reasonable barrier parameters. This can be explained 
by the presence of organic impurities in the oxides forming the tunnelling barrier [20,21]. 

The shape of the normal metal tunnel junction conductivity is described with 10% 
accuracy, in the voltage region IVI < 0.4 V, by a simple formula: 

u(ev) =u(O)+aev+b(ev)'  (4) 

where a and b are constants depending on the barrier parameters. This, however, is valid 
only for small shifts of the conductivity minimum. An interesting observation is that, at 
least in some cases, this approximation describes the conductivity data better ,than the exact 
models 1201, i.e. the experimental tunnelling conductivity is more parabolic than the exact 
solutions would suggest. 

To the overall shape of the tunnelling conductivity should be added contributions coming 
from excitation of vibrational modes due to impurities in the oxide layer [ZZ], the oxide itself 
[23] and the metal electrodes [3]. The inelastic tunnelling processes are well known and 
are successfully used, for example, for investigations of the vibrational spectra of molecules 
1241. Fortunately, these contributions are symmetric against zero voltage and should not be 
reflected in the odd part of the tunnelling conductivity. 

One may choose the two different metal electrodes of the tunnel junction in such a 
way that n'~, (w)  > U'Fb(w) in the frequency range characteristic to u'F,(o). Assuming 
further that ya/pLa is comparable to or greater than n/jLb, the self-energy effects of metal b 
in the odd part of the tunnelling conductivity described by ,equation (2) may be neglected. 
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This would lead to a simple proportionality between u-(eV) and E;(eV) if not for the linear 
terms deduced from (2) and (3). Let us define the experimental conductivity, uz(eV), as 

uE(eV) u-(eV) f a e V  (5) 

where 

u-(ev) = - u d y / f i W l W  (6) 

and the constant Q now contains all the contributions linear with voltage. (Notice that some 
of the indices are skipped as they are no longer necessary.) Thus, having measured the 
conductivity of the normal metal tunnel junction consisting of appropriately chosen metals, 
one can derive the real part of the electron self-energy in one of the electrodes, providing 
one finds a way to e l i i a t e  the limear part of uz(eV).  The inversion methods presented 
below serve to extract further information (frequency dependence of a2F(o)) from the 
tunnelling data. 

3. Inversion methods 

Coming from the well known result for the phonon contribution to the electron self-energy, 

1 - iz i’@‘ dv a2F(u) (7) 

obtained from the Eliashberg equations at zero temperature [191, Svistunov et a[ [I] derived 
a formula that may be updated to the form 

We have recently proposed a similar formula connecting the Eliasbberg function directly 
with the odd part of the tunnelling conductivity [18] 

du. 2 f i  4w a F(w) = --- 

(For the derivation of (8) and (9) see appendix 1.) 
As the upper limits of the integrals in (8) and (9) are infinite, an extrapolation of the 

conductivity data out of the experimental range is necessary. From (7) one can estimate 
that for w >> 00 (WO denotes the phonon spectrum boundary): 

&(U) N -2Elw - A(w4)/303 

dCl(w)/do N 2i?/02 + h(w4)/o4.  

(10) 

(11) 

With sufficient accuracy. the last terms of the above equations may be omitted for w, > 300, 
and the constant (for the definition of the constants see appendix 1) may be obtained from 
the continuity condition of U&) (or its derivative) at U,. The only problem is that before 
doing so one has to remove the linear background from U?(@), i.e. determine the constant 
a of relation (5). This can be done with the help of the sum rules derived From appropriate 
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dispersion relations (appendix 2). For clarity, the sum rules are listed in table 1. The first 
two of them are exact sum rules-for practical purposes more useful are the approximate 
ones with limited region of integration. Two of them, numbers 3 and 5 of table 1, are used 
to determine the constant a from, respectively, u?(o) or du?(w)/do = du-(o)/dw f a :  

a = -  1 (duYw) - I _ -  1 1% - due(@) &), 
2 dm o c  o dw 

The remaining sum rule, number 4 in table 1, gives the value of A’ = A2yuo/p, 

without need of calculating a2F(w) from (8) or (9). (In fact, both inversion methods 
give only the function G(w) = or2F(o)yuo/p.) Equation (14) allows one to determine 
the constant y whenever the value of AZ is known (from superconductive tunnelling, for 
example). 

Table 1. Sum rules for the e l w n  selfenergy and its derivative. 

No Sumrule 

1 r R e F d w = O  

. . .  

dw rZA2 
Z,(w)- =-- 

2 

The following property is useful for scaling of the initial data 

= -A. (15) 
lii-=- SI(@) d z z )  
w+o w 

Thus. having measured the conductivity u(w),  or its derivative du(o)/du, of a tunnel 
junction in the region (-wc, wc), of > 304, one may calculate the frequency dependence 
of the electron-phonon interaction function, a2F(o) .  

It should be stressed that, although the two versions of the inversion method for normal 
metal tunnelling data are mathematically equivalent, formula (8) should be used only when 
du&)/do is direcdy available, as the numerical differentiation of noisy U&) data is 
always somewhat arbitrary. Still, the character of the convergence of the integrals in (9) 
and (8) is the same. This means that the cut-off energy, w,, at which one may start the 
extrapolation of U-(@) and, respectively, du-(o)/dw, is the same in both cases. Calculations 
performed for both versions of the method have shown that o, may be as low as 2wo without 
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noticeable loss of accuracy. However, to get, accurately enough, the constant a from (12) 
or (13), the respective experimental data up to energy o, > 3& are needed (this is a 
consequence of taking into account only the first terms of the approximations (10) and 
(11) while deriving relations (12) and (13)). Because of the different denominators in the 
integrands of (9) and (S), the integrand of formula (9) has to be calculated more accurately, 
but in a narrower frequency region around o, which in effect speeds up the numerical 
calculations. 

4. Thermal smearing 

The derivatives of the tunnelling current are measured using the well known modulation 
technique-by harmonic detection of the current induced by a small AC voltage supplied 
to the tunnel junction together with the constant biasing voltage V.  Generally, the 
higher the harmonic, the smaller is the detected signal. The modulation voltage, Vu, 
should be as small as possible to minimize the smearing of the experimental curve that 
it causes (its halfwidth equals 1.73 eV, or 1.22 eV, in the case of, respectively, u(o) 
and do(o)/dw measurements). This smearing adds geometrically to the significant thermal 
broadening of the halfwidth of 5.4ksT characteristic for both u(o) and du(o)/do. Another 
source of broadening of the Eliashberg function is experimental error, unavoidable in such 
subtle experiments, and consecutive averaging (smoothing) of  the conductance, U-@) (or 
du-(o)/dw), data. The magnitude of the experimental error may be decreased by increasing 
the modulation voltage, but, in effect, one may only balance between the two smearing 
components. 

Leavens 1171 has recently proposed an inversion formula for ru2F(o), which, based 
on the convolution theorem for the Fourier transform, eliminates the effect of thermal 
smearing of du(o)/do. However, the existence of a substantial experimental error in 
normal metal tunnelling conductivity data drastically limits the usefulness of this formula 
Furthermore, it seems to be more sensible to use very efficient FFr (fast Fourier transform) 
algorithms while solving the deconvolution problems, than to build an algorithm based 
on an analytical expression of [17] involving double integration. Moreover, there exist a 
class of mathematical methods, called regularization methods, allowing one to handle data 
perturbed by noise [26], and these methods are easy to use along with the discrete Fourier 
transform. 

The elimination of the smearing of the tunnelling conductivity caused by the finite 
temperature comes to a stabilization of the ‘ill-conditioned‘ problem of deconvolution. 
All the quantities met here; viz. X(o), u(o) and olZF(o), depend on temperature. The 
temperature dependence of a2F(w)  due to thermal expansion of the crystal lattice may be 
neglected at low temperatures, but the electron self-energy function [17] 

and the odd part of the tunnelling conductivity 

depend much more strongly on temperature (f(o) is the Fermi-Dirac distribution function). 
Thus, both the odd part of the conductivity and its derivative can be expressed at finite 
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temperature as a double convolution of their zero-temperature form, U-(@) = u-(w, T = 0), 
du-(o)/dw du-(o, T = O) /dw,  with the derivative of the distribution function, 

Here, g(o)*h(o) = J”dvg(v)h(v-a), andthesecond powermarks thedoubleconvolution. 
Generally, one has to calculate the Fourier transform of the odd part of the conductivity, 

~ ( o ,  T )  (or its derivative), and then divide it by 

where t is a ‘time’ variable. Without going into the details of the regularization method 
used, it is enough to state that it is a kind of optimization procedure with only one parameter, 
depending crucially on the estimate of the experimental e m r  (see appendix 3). Fortunately, 
the Fourier transform gives a means of evaluation of the experimental error (this is not the 
error of the measnrement of U’(@, T )  but the error characterizing U&, T ) )  as a weighted 
sum of the transform coefficients. As a result one obtains the most ‘smooth’ function from 
the class of solutions of the deconvolution task. 

Thus, the full inversion procedure aimed at obtaining the frequency dependence of 
orzF(o) from u(w, T )  consists of the following steps: 

(i) U!(@, T )  is obtained from measured U(@,  T) .  
(ii) Constant a is calculated from (12) and ~ ( w ,  T )  is determined. 
(iii) Constant J?yu~o/p is estimated from the condition of continuity of .-(W. T )  at the 

(iv) The regularized e l ina t ion  of the thermal smearing is performed (in a degree 

(v) Function G(w) = or’F(w)yu~/p is calculated from (9). 

We have implemented the above algorithm in a computer code and as testing data 
we used U @ ,  T )  calculated from the values of a2F(w) given for Pb and Sn in [30]. 
The thermal smearing was introduced according to equations (16) and (17), and the 
‘experimental’ error was simulated by a random-number generator. The whole calculation 
loop orZF(o) 4 U(@,  T )  + or2F(w) closed with a very good agreement (within tenths of 
a per cent) when the ‘experimental’ error was kept zero. 

cut-off frequency o, (also A’ and & = Ayuo/p may be estimated from (14) and (15)). 

determined by the experimental error) giving U-(@). 

5. Discussion 

Both of the presented inversion methods represented by relations (8) and (9) may be 
successfully used to determine the Frequency dependence of the electron-phonon interaction 
function when either the tunnelling conductivity, u(o, T ) ,  or its derivative are known in the 
range (-300, 3 ~ 0 ) .  The elimination of thermal smearing may be applied both to U-(@, T )  
and io du-(o, T)/dw to the same effect depending on the magnitude of the experimental 
error. 

The experiments performed so far [1,3-51 have shown that the electron self-energy 
effects are visible in the odd part of the tunnelling conductivity in the normal metal tunnelling 
junctions-at least for metals with strong electron-phonon interaction. However, the results 
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obtained for Pb and Sn, for which or2(o) is known also from superconductive tunnelling 
spectroscopy, indicate the presence of some other phenomena not found in the previous 
experiments. 

Already some time ago, Ivanchenko and Medvedev [9] together with Belogolovsku 
[lo, 111 suggested that the tunnelling current flowing between two normal electrodes should 
consist of at least three terms (if we consider only the interactions between the tunnelling 
electrons and phonons), 

I ( e V )  = I&V) + Ii(eV) + I&V). 

Two of them are known and come from elastic (Id) and inelastic (4.) tunnelling channels. 
The interference term (Ii) effectively reduces the higher-frequency amplitude of the elastic 
contribution by having the same symmetry but opposite sign. One could interpret the 
elastic and interference terms together as the partial ‘undressing’ of the tunnelling electron 
from the many-body interaction [U], which is quite convincing knowing that in the case of 
normal metal junctions tunnelling electrons probe only a few atomic layers of the electrodes. 
However, it is not clear why the same should not be true for the inelastic tunnelling process. 
In fact, an attempt has been made to invert the inelastic tunnelling conductance of a normal 
metal junction to get the Eliashberg function [27,28]. An experiment with an AI-I-Pb 
junction has shown that the low-frequency part of cr2F(o) is dumped (transverse peak of 
olZF(o) spectrum of Pb). This was again explained as due to the metal-insulator interface 
and short depth to which tunnelling electrons probe the normal metal [27]. This line of 
reasoning could lead to a hypothesis that at the surface of a normal metal the probability 
weights of taking part in inelastic and elastic tunnelling processes are different for transverse 
and longitudinal phonons. It is probably accidental, but the ratios between the magnitude of 
the transverse to longitudinal peaks in or2F(o) deduced from inelastic tunnelling experiment 
[27] and elastic one [3] (see figure 2)  are exactly reversed. However, there may be 
still another explanation for the rounding and change of the relative magnitude of the 
electron-phonon interaction function of Pb obtained from the normal metal tunnelling- 
simply disorder present at the metal-insulator interface (compare figure 2 and the data of 
Knorr and Barth for amorphous Pb films [29]). 

Thus, we are not convinced that the concept of the interference contribution to the 
tunnclling current explains lhe experimental data. Certainly, the shift of the maximum of 
CL(@) to lower energies observed for AI-I-Sn junctions [4] can be explained by high- 
energy dumping of orzF(o). Also the results of Rowell et QZ [3] suggest the same but to 
much smaller extent. The lowering of the second maximum of U-@) for Pb-I-Pb junctions 
cannot be explained by any type of smearing discussed in this paper. In fact, we used tho 
data of [3] (read from figure 17 of that reference) to calculate the function a2F(o). The 
result is shown in figure 2 together with a simulated one. To obtain the former we used 
or2F(w) determined from superconductive tunnelling experiments [30] and computed &(U)  
assuming the same magnitude of experimental error (for the same number of points) and 
the same amount of smearing caused by temperature and modulation voltage. Then the 
inversion method has been applied-similarly as for the original data The agreement of 
both or2F(o) curves up to about 6 meV is astonishing taking into account the low accuracy 
of the initial data. The second peak of the ‘experimental’ orZF(w) is lowered in magnitude as 
the shape of U&) suggested. Unfortunately, we could not perform the same calculations 
for the data of Svistunov et a! [l] or Chemyak et aZ 151 as they presented their U-(@) 

results only up to about 00. Still, the shape of orZF(o) curve obtained for Pb in [I] may 
be well explained by the smearing caused by the temperature of 2.3 K and the modulation 
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amplitude of 0.3-1 mV (see figure 3), even when the experimental error is neglected. In 
case of PbwBiSo alloy, the structure of the obtained electron-phonon interaction function 
is even stronger than that resulting from superconductive tunnelling experiments [I]. An 
exception is aZF(o)  derived from the conductance of an AI-I-Bi junction where the low- 
frequency peak is much more pronounced that the rest of the spectrum. However, in this 
case, the estimated constant y exceeds those obtained for other junctions by an order of 
magnitude. As long as this effect is not investigated, one cannot rule out the possibility of 
an explanation other than the interference con@ibution. 

Frequency, w ,  meV 
Figure 3. The electron-phonon interaction function, u2F(o). of Pb (from [I]) (full curve), and 
calmlated hom superconductive "Elling data 1301 fa T = 2.3 K and modulation amplihlde 
of 0.3 mV (broken e w e )  and 1 mV (dotted curve). 

The last problem we would like to discuss is the influence of the structure in the 
electronic density of states, fi(o), in the immediate vicinity of the Fermi level on the 
tunnelling conductance [13,14]. Such sharp structure in fi(o) should cause symmetry 
deviation of the electron self-energy, and an inversion procedure of the kind presented here 
would not~give a function proportional to azF(w) but a more complicated one: 

G(w) = dSZa*F(o - Q)i[$(Q) + $(-a)] w > 0. (20) 
d u  

The apparent difference between or2F(o) and G(w) is a negative tail of the latter close to 
oo and a relative shift of weight to lower frequencies [13,14]. Unfortunately, no structure 
that could be attributed to the self-energy effects has been seen in the odd part of the 
conductivity of tunnel junctions with the A15 compounds in the normal state 1311. Even 
if one 'succeeded in such a measurement, it seems very probable that the effects of the 
sharp structure of A(@) would be still unobservable in the distorted region near the metal- 
insulator interface to which the tunnelling effect, especially in normal metal junctions, is 
limited [14]. 
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6. Condwions 

The inversion methods 11,181 allow the extraction of the frequency dependence of the 
electron-phonon interaction function, azF(w),  from the normal metal conductivity data 
taking into account only the elastic tunnelling channel. The account of other effects may 
be estimated by comparison of the functions aZF(w) obtained from superconductive and 
normal metal tunnelling experiments performed on the same tunnel junction. Then, also the 
even part of o ( e V )  (measured in the normal state) could be used to derive cuZF(w) applying 
the method of [27]. In this way complementary data could be collected, finally resolving 
the problem of different tunnelling channels in a normal metal junction. What is still 
controversial is how accurately equation (4) describes a real tunnelling barrier. Brinkmann 
[20] gives it with 5% accuracy for 101 < 200 meV, while the magnitude of the self- 
energy effects is at most a few tenths of a per cent of +). Probably all deviations 
from equation (4) are symmetric against zero energy, thus reducing themselves in U-@). 
However, one should not assume that the complicated shape of a real barrier leads only to 
a linear contribution to U-@). In other words, the inversion of the normal metal tunnelling 
data is far from being a closed subject. Elimination of the remaining doubts will require 
further experiments and, possibly, an increase of measurement accuracy. 

The elimination of thermal smearing from the normal metal tunnelling conductivity is 
strongly limited by experimental error. More success should be expected in the case of 
inelastic tunnelling and point contact spectroscopy, where the thermal smearing function is 
the same but the experimental ermr is smaller. 
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Appendix 1 

Both equations (8) and (9) may be directly obtained from the dispersion relation 

dw x dv w 2 - v z  

in place of the originally used relation [l] 

(Al.l)  

(A1.2) 

The dispersion relations are due to the analytic properties of the electron self-energy 
function and its symmetry on the real frequency axis, 

X(-o) = - Y ( w )  (A1.3) 

dZ(-w)/dw = [dC(o)/do]*. (A1.4) 
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Important is the convergence of S(o) is the infinitefrequency limit: 

X(o0) = - h A 2  (A1.5) 

[dE(o)/doll,=, = 0. (A1.6) 

Here 
00 

A2 = 1 (r2F(o) do. (A1.7) 

Using equation (6) and knowing from (7) that d&(w)/do = -dF(o) ,  one can directly 
obtain relation (8). 

List of the dispersion relations involved in the inversion methods of normal metal 
tunnelling data completes the relation obtained from (Al.1) by integration by parts: 

- d%,(o) = -_ “Im v ~ I ( ; \  &, 
d o  ?I (w2 - 2 2 

Relation (9) follows from-it directly. 
The other constants used in this paper are defined as follows: 

M 

,6 = o(r2F(o)  dw 

A = 2 1 [a* F (w)/o]  d o  

(04) = @/A) dm w3(r2F(o) do 

m 

Appendix 2 

(A1.8) 

(A1.9) 

(Al.10) 

(ALII) 

A number of sum rules necessary for the inversion methods to work may be derived fiom 
the above three disperion relations ((ALl), (A1.2), (Al.8)). First of the sum rules listed in 
table 1 was deduced in [l] from the property C ,  (0) = Cl(oo) = 0 applied to relation (A1.1). 
It is also possible to obtain this rule from the so-called superconvergence theorem for 
the Hilbert transform [ 7 3  expIoiting the properties of dE(o)/dw. The next sum rule 
may be derived either ikom the explicit form of El(w), equation (7) or from one of the 
relations (A1.2) or (A1.8). The thiid rule of table 1 is an approximate form of the exact 
sum rule, 

(A2.1) 

arising from relation (A1.2). The second sum rule of table 1 within the same approximation 
(equation (10)) gives rule number 4. (The integrand of rule 4 may seem to have a singularity 
at o = 0, but as XI (o -+ 0) - w, the singularity disappears.) The last, fifth, rule of table 1 
follows from the first one within approximation (11). 
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Appendix 3 

Defining z(o) 
equation (18) in the form: 

u-(o), do) u-(o, T )  and H ( t )  = H ( t ,  T), one may rewrite 

Z ( O ) = ~ ( O ) * ~ ( @ )  = dvg(v)h(v-w) (A3.1) 

F(z(o)), and 

s 
represented by a multiplication of the respective Fourier transforms, Z( t )  
so on, 

Z ( t )  = G(t) . H ( t )  (A3.2) 

(to conserve the notation used within this paper, we use a ‘time’ variable, t ,  for the forward 
Fourier transform). 

The deconvolution problem comes to division in the ‘time’ domain: 

(A3.3) 

where F-‘ denotes a reverse Fourier transform. 
Even assuming that the function H ( t )  is known exactly, there is no guarantee that the 

above reverse Fourier transform is convergent or that it gives an exact function g(w),  if the 
function z(o) is noisy (or just inaccurate). 

The regularization method introduces a stabilization factor, s(t,o!), into the above 
equation, 

(A3.4) 

(In practice, s(f ,o!)  is used to damp the function Z ( f ) / H ( t )  for high values oft.) 
The stabilization factor has to fulfil a set of conditions, which will not be discussed 

here. For the specific case presented in this paper we have chosen the function of the form: 

(A3.5) 

where a is a regularization parameter, 0 6 a < 1. It is obvious that for a = 0, s(t, a) = 1 
and no regularization is performed. On the other hand, for o! = 1, we have g(o) = z(o) 
and no thermal smearing is being removed from U-@, T) as the deconvolution does not 
take place. 

There exists a unique value of a < 1 for which the absolute error of z(o), 6, fulfils the 
equation [26]: 

or its equivalent 

(A3.6) 

(A3.7) 



On inversion of n o G l  metal tunnelling data 6649 

Fortunately, the value of 6 may be calculated as the weighted sum of Fourier coefficients, 
zi, of ~(0). In the simplest case, (A3.7) reduces to the equality: 

(A3.8) 

where hi are the Fourier coefficients of h ( o ) ,  N is the number of transform points, and 
N, is the closest integer to N / 2 .  (The proper calculation of the Fourier transform and the 
ill-conditioned Ipoblem of summation of its coefficients form a separate subject, which will 
be not addressed here.) 

The elimination of the thermal smearing starts with ci = 1. Comparison of both sides 
of (A3.8) shows whether the elimination may be performed. If the right-hand side is the 
smaller one, then alpha may be consecutively reduced until the equality is reached with 
assumed accuracy. We have used the bisection algorithm in finding the optimal value of 
the regularization parameter. In effect, one obtains a reduction of the thermal smearing to 
the extent determined by the accuracy of the initial data-and the convenient choice of the 
stabilization factor allows one to estimate the amount of this reduction from the value of (Y. 

Another consequence of the convenient choice of the stabilization factor, s(t, U), is that 
it may not be 'strong' enough to give a smooth function z(o) = u-(o) for all possible 
values of temperature and experimental error. In fact, we have used the properties of 
the regularization method to form a more general algorithm, allowing processing of data 
disturbed by noise, which exploits stabilization factors of different kinds-depending on the 
amplitude of the experimental error. This algorithm was used separately in cases when the 
reduction of thermal smearing was not necessary, or simultaneously with the one described 
above. 
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